Zur π -Elektronenstruktur von Iminophosphoranen

Von

Peter Schuster*

Aus der Lehrkanzel für Theoretische Organische Chemie der Universität Wien

Mit 7 Abbildungen

(Eingegangen am 12. April 1967)

Die π -Elektronenstrukturen einiger Iminophosphorane werden in Form der mittels der HMO-Methode berechneten Moleküldiagramme angegeben und unter Verwendung des zur Verfügung stehenden experimentellen Materials diskutiert. Die dazu erforderlichen Parameter wurden zum Teil abgeschätzt (Coulombintegrale: $\alpha_{\rm F, 3d}$ und $\alpha_{\rm N}$), zum Teil mit Hilfe der *Helmholtz*schen Näherung berechnet (Resonanzintegral: $\beta_{\rm FN}$).

The π -electron structures of several iminophosphoranes are calculated with the HMO-Method and presented as molecular diagrams. They are discussed with the aid of the available experimental material. The necessary HMO-parameters were partly estimated (Coulomb integrals: $\alpha_{P, 3d}$ and α_N) and partly calculated using the *Helmholtz* approximation (Resonance integral β_{PN}).

Die Verbindungsklasse der Iminophosphorane oder Phosphinimine (1) ist seit langem bekannt^{1, 2}. In neuerer Zeit erregten diese, mit Phosphoniumyliden und Phosphinoxiden isoelektronischen Verbindungen auf Grund der von ihnen ausgehenden synthetischen Möglichkeiten verstärktes Interesse^{3a}. Während speziell bei den N-Aryl-iminophosphoranen bisher ausschließlich die am Stickstoff lokalisierte negative Ladung für "Wittigartige" Reaktionen ausgenützt wurde, wies erstmals Zbiral⁴ darauf

^{*} Herrn Prof. Dr. h. c. *Friedrich Wessely* in Verehrung und Dankbarkeit zum 70. Geburtstag gewidmet.

¹ H. Staudinger und J. Meyer, Helv. Chim. Acta 2, 635 (1919).

² F. Mann und E. J. Chaplin, J. Chem. Soc. 1937, 527.

⁸ A. W. Johson, "Ylid Chemistry", Acad. Press, 1. Aufl., New York 1966,

^{3a} : p. 217, p. 222; ³ b: p. 236.

⁴ E. Zbiral, Tetrahedron Letters 18, 2005 (1966).

P. Schuster: Zur π -Elektronenstruktur von Iminophosphoranen 1311

hin, daß die Gruppierung P=N— als eigenständiger Elektronendonator am aromatischen Ringsystem betrachtet werden kann, der in seiner dirigierenden Wirkung die NH₂-Gruppe übertreffen müßte.

Über die Geometrie und elektronische Struktur der Iminophosphorane ist jedoch nur sehr wenig bekannt*. Außer IR- und UV-spektroskopischen Messungen⁵, kalorimetrischen Daten⁶ und Bestimmungen von Dipolmomenten⁷ liegt kein Material vor. Im folgenden wird ein Versuch beschrieben, die π -Elektronenstruktur von Iminophosphoranen im Rahmen der einfachen LCAO—MO-Methode von *E. Hückel* (HMO-Methode) zu berechnen.

Elektronische Struktur von Iminophosphoranen

Am Phosphoratom der Iminophosphorane (1) kann mit großer Sicherheit tetraedrische Hybridisierung in Analogie zu den

Phosphoniumyliden und Phosphinoxiden angenommen werden. Besitzt der Phosphor eine formale Ladung + 1, wie in den betrachteten Verbindungsklassen, so werden die 3 d-Orbitale so weit kontrahiert, daß sie sich mit entscheidendem Energiegewinn am Bindungssystem beteiligen können. Für die hier angestellten Betrachtungen, bei denen die Substituenten R₁ bis R₃ am Phosphor unberücksichtigt bleiben sollen, sind nur die Orbitale d_{zx} und d_{yz} von Bedeutung, welche mit dem 2 p_x- bzw. 2 p_y-Atomorbital des Stickstoffatoms zu π -Bindungen kombinieren können.

Ohne Kenntnis der Geometrie der Verbindungen 1 sind plausible Annahmen betreffend die Hybridisierung am Stickstoffatom weit schwieriger zu treffen. *Johnson*^{3b} diskutiert drei mögliche Grenzfälle: tetraedrische, trigonale und digonale Geometrie.

Das UV-Spektrum von N-(p-Nitrophenyl)-P-triphenyl-iminophosphoran (2)⁵ läßt auf eine besonders starke Wechselwirkung zwischen dem

$$(C_6H_5)_3P = \overline{N} - NO_2 \qquad (C_6H_5)_3P = \overline{N} - C_6H_5$$
2
3

* Mit Hilfe eines eindimensionalen Freien-Elektronengas-Modells wurden die π -Elektronensysteme vom Phosphazinen, die gleichfalls eine P=N-Gruppierung enthalten, berechnet: *H. Goetz*, Ann. Chem. **701**, 1 (1967)

⁵ L. Horner und H. Oediger, Ann. Chem. 627, 142 (1959).

⁶ A. P. Claydon, P. A. Fowell und C. T. Mortimer, J. Chem. Soc. 1960, 3284.

⁷ G. M. Phillips, J. S. Hunter und L. E. Sutton, J. Chem. Soc. 1945, 146.

Iminostickstoff als Elektronendonator und der Nitrogruppe als Akzeptor schließen. Aus diesem Grund erscheint trigonale oder digonale Hybridisierung am Iminostickstoff wahrscheinlicher als tetraedrische, bei der die Überlappung eines Orbitals mit einsamem Elektronenpaar (1 p) am Stick-

Abb. 1. Elektronischer Aufbau der P = N-Gruppierung in Iminophosphoranen

stoff mit den 2 p_{π} -Atomorbitalen des aromatischen Ringes gegenüber den beiden anderen Fällen stark vermindert ist.

Durch Linearkombination der Atomorbitale zu Molekülfunktionen erhalten wir zwei π -Elektronensysteme: eines besitzt die Knotenfläche in der xz-Ebene (π_y -Elektronensystem) und ist auf die zwei Zentren P und N beschränkt; das zweite ist zum ersten orthogonal und besitzt seine Knotenfläche in der yz-Ebene (π_x -System). Das π_x -System umfaßt das P-Atom, das N-Atom und das π -Elektronensystem des Substituenten R'. Sämtliche Substituenteneffekte in den hier betrachteten Verbindungen wirken sich ausschließlich im polyzentrischen π_x -System aus, weshalb auf eine Betrachtung des zweizentrischen π_y -Systems in diesem Beitrag verzichtet wird. Bezüglich des π_y -Elektronensystems (π' -Delokalisation) sei hier nur auf die Arbeit von Cruickshank⁸ verwiesen.

⁸ D. W. Cruickshank, J. Chem. Soc. 1961, 5486.

Von den insgesamt zehn Elektronen, die das Phosphor- und das Stickstoffatom zusammen in ihren Valenzschalen besitzen, werden vier zur Ausbildung der σ -Bindungen zu den Substituenten R₁, R₂, R₃ und R' verwendet. In dem bindenden σ -Molekülorbital zwischen P und N finden zwei weitere Elektronen Platz. Es bleiben damit vier Elektronen über, die auf das polyzentrische π_x -Elektronensystem und das zweizentrische π_y -System aufzuteilen sind.

Die Frage nach dem Bindungswinkel ϑ (Abb. 1) am Iminostickstoffatom, der nach den obigen Überlegungen zwischen 120° (trigonale Hybridisierung) und 180° (digonale Hybridisierung) liegen kann, braucht im Rahmen der HMO-Methode für eine Berechnung des π_x -Elektronensystems nicht beantwortet zu werden. Wegen der Vernachlässigung von 1,3- und noch weiter reichenden Wechselwirkungen in der HMO-Methode gehen die Bindungswinkel in die Berechnung nicht direkt ein. Für die Abschätzung der Übergangsmomente in den Elektronenanregungsspektren wurde $\vartheta = 120^\circ$ gesetzt.

In den berechneten N-Aryl-Iminophosphoranen wurde die P—N-Bindung in der Ebene des aromatischen Ringsystemes liegend angenommen. Die beschriebene Geometrie der P=N-Gruppierung ist in Abb. 1 zusammengefaßt.

Abschätzung der Coulombintegrale (1)

Zur Abschätzung der Coulombintegrale betrachtet man den nach Entfernen der π_x -Elektronen verbleibenden Molekülrest ("Core"). Die Atomrümpfe des Stickstoffs im Iminophosphoran und im Pyridin

$$\alpha_{\mathbf{X}} = \alpha_{\mathbf{C}} + \omega_{\mathbf{X}} \cdot \boldsymbol{\beta} \tag{1}$$

sind einander sehr ähnlich. Zum Unterschied vom Pyridin beteiligt sich im Iminophosphoran das Stickstoffatom auch noch am π_y -Elektronensystem. Dadurch wird die Elektronendichte am N vermindert und das Coulombintegral muß im Vergleich zu Pyridin etwas erniedrigt werden; für ω_N ist dementsprechend ein höherer Zahlenwert anzusetzen. B. und A. Pullman⁹ verwenden für Pyridinstickstoffe den Parameter $\omega_N = 0.4$. Entsprechend den obigen Überlegungen wurde im Iminophosphoran der Parameter für das Coulombintegral des Stickstoffs auf $\omega_N = 0.5$ erhöht.

Das Coulombintegral für ein 3 d-Elektron am Phosphor muß einen höheren Wert besitzen als das für ein 2 p-Elektron am Kohlenstoff, wie eine Betrachtung der Ionisierungsenergie zeigt $(I_{3 \text{ d}, P(\text{sp}3 \text{ d})} \cong 2 \text{ eV},$ $I_{2 \text{ p}, C(\text{sp}3)} = 11,3 \text{ eV})$. Dementsprechend muß also der Wert für ω_{P} negativ

⁹ B. und A. Pullman, "Results of Quantum Mechanical Calculations of the Electronic Structure of Biochemicals", Vol. 1, p. VI, Paris 1960.

) 6	The left of the Comment	(leaders) birterrel	T : h	
Atom	Funktionelle Gruppe	Coulombintegral		
P =	Iminophosphoran	α-0,5 β	*	
$=\overline{\mathbf{N}}$	Iminophosphoran	$\alpha + 0,5$ β	*	
CH ₃ CH ₃ N—	Dimethylamino-	lpha+0,65eta	11	
$\mathbf{\mathbf{N}}^{(+)}$	Nitro-	$\alpha + 1,8$ β	10	
() O	Nitro-	$\alpha + 1,5$ β	10	
O ₂ N—C	Nitro-	lpha+0,25eta	10	
\mathbf{H}_{a}	Methyl-	α-0,5 β	12	
H₃≡C—	Methyl-	α 0,1 β	12	
Bindung	Funktionelle Gruppe	Resonanzintegral	Lit.	
P=N-	Iminophosphoran	0,5 β	*	
	Iminophosphoran, Pyridin	1,0 β	9	
$ ightarrow m C$ $ m \overline{N}$	Amino-	0,9 β	9	
)CN	Nitro-	1,1 β	10	
$\mathbf{N} = \mathbf{O}$	Nitro-	1,6 β	10	
H₃≡C—	${f Methyl}$ -	2,5 β	12	
H₃≡C—C	Methyl-	0,7 β	12	

Tabelle 1. Parameter für Heteroatome und Methylgruppen

sein [vgl. (1)]. Der gewählte Wert von $\omega_P = -0.5$ steht zwar nicht im Einklang mit der Größe der Differenz der Ionisierungsenergien, ergab aber bei der Berechnung der Elektronenanregungsenergien gute Resultate.

Alle verwendeten Parameter sind in Tab. 1 zusammengestellt.

^{*} Eigene Abschätzung, vgl. Text.

¹⁰ P. Schuster und O. E. Polansky, Mh. Chem. 97, 1379 (1966).

¹¹ O. E. Polansky und P. Schuster, Mh. Chem. 95, 281 (1964).

¹² C. A. Coulson und V. A. Crawford, J. Chem. Soc. 1953, 2052.

H. 4/1967] Zur π -Elektronenstruktur von Iminophosphoranen

Abschätzung des Resonanzintegrals (2) der P-N-Bindung

Vor der Bestimmung des Parameters ρ_{PN} für das Resonanzintegral der P—N-Bindung wurde sein Einfluß auf die Energieniveaus und die π -Elektronenverteilung in N-Phenyl-P-triphenyl-iminophosphoran (3) untersucht.

$$\beta_{XY} = \rho_{XY} \cdot \beta \tag{2}$$

۹PN		berechnet			exp. ⁵ ***		
	$\Delta E(\beta)$	$\Delta E(kK)^*$	μ ^{2**}	I **	v'(kK)	S	
0	0,777	19,4	0	0		800 bis 3000	
	1,277	31,9	0,57	1800			
0,5	1,042	26,1	1,42	3700			
	1,410	35,3	0,59	2100			
1,0	1,453	36,3	2,16	7800			
	1,630	40,8	0,71	2900			

Tabelle 2. Auswirkung der Variation von β_{PN} auf das Elektronenanregungsspektrum von 3

* $|\beta| = 25 \text{ kK} = 25 000 \text{ cm}^{-1}$.

** $I = \mu^2 \cdot \Delta E (kK) \cdot 10^2$ als genähertes, relatives Maß für die Intensität des Überganges; μ^2 wurde unter Zugrundelegung einer idealisierten Molekülgeometrie, sämtliche Bindungswinkel $\vartheta = 120^{\circ}$ und sämtliche Atomabstände von Nachbarn $r = \sqrt{2}$ Å, berechnet ¹⁰.

*** Im UV-Spektrum nur als Inflexionen zu erkennen.

Die Verschiebung der Energieniveaus bei einer Variation von $0 \leq \leq \rho_{\rm PN} \leq 1,0$ ist in Abb. 2 dargestellt. Die beiden ungestörten Benzol-Molekülorbitale mit Knotenflächen in der C—N-Bindung und den Energiewerten $E_{3,6} = \alpha \pm \beta$ werden notwendigerweise von der Parametervariation nicht berührt. Besonders gering ist der Einfluß auf das tiefste besetzte ($E_1 \sim \alpha + 2,2\beta$) und oberste unbesetzte MO ($E_8 \sim \alpha - 2,1\beta$).

Die beiden restlichen bindenden Molekülorbitale des "N-Phenyl- π -Elektronensystems" werden durch die Kombination mit der 3 d-Atomfunktion des Phosphors stabilisiert, und zwar das höher gelegene (E_4) viel stärker als das andere (E_2). Dementsprechend müssen das ursprüngliche 3 d-Niveau des Phosphors (E_5) und das restliche gegenbindende MO (E_7) destabilisiert werden (vgl. Abb. 2).

Die Auswirkung der Variation von ρ_{PN} auf das Elektronenanregungsspektrum ist in Tab. 2 gezeigt. Für $\rho_{PN} = 0$ ist der energieärmste Über-

gang verboten. Mit der Erhöhung des Wertes von $\rho_{\rm PN}$ steigt das Übergangsmoment der ersten Anregung an, während gleichzeitig die Energiedifferenz immer größer wird (vgl. Abb. 2); die Bande wandert dementsprechend gegen kürzere Wellenlängen. Das in Methanol gemessene UV-Spektrum von 3 ist recht uncharakteristisch⁵. Im lg ε/ν' -Diagramm⁵ lassen sich mehrere Banden mittlerer Intensität (lg $\varepsilon \sim 2,9 - 3,5$) bei einer Wellenzahl von $\nu' \sim 30-33$ kK* erkennen. Die lg ε/ν' -Kurve geht bei kürzeren Wellenlängen direkt in den Absorptionsbereich der (C₆H₅)₃P-

Abb. 2. Abhängigkeit der Orbitalenergien in N-Phenyliminophosphoran (3) vom Resonanzintegral β_{PN}

Gruppierung über, was eine genaue Bestimmung der Bandenlagen und Intensitäten unmöglich macht. In Tab. 2 entsprechen die experimentell bestimmten Werte noch am besten dem mittleren Bereich $\rho_{\rm PN} \sim 0.5$.

Der Einfluß von $\rho_{\rm PN}$ auf die π -Elektronenverteilung ist in Tab. 3 gezeigt. Es sind keine überraschenden Ergebnisse zu erkennen. Unabhängig von der Größe von $\rho_{\rm PN}$ wird die Elektronendichte in den o- und p-Positionen des aromatischen Ringes erhöht. Je stärker die 3 d-Funktion des Phosphors mit dem übrigen π -Elektronensystem kombiniert, d. h. je größer $\rho_{\rm PN}$ ist, um so geringer wird die positive Ladung am Phosphor, um so geringer wird aber auch die Elektronendichte im Phenylring.

$$H_{ab} = k \cdot S_{ab} \frac{H_{aa} + H_{bb}}{2} \text{ bzw.}$$

$$\beta_{ab} = k \cdot S_{ab} \frac{\alpha_a + \alpha_b}{2}$$

$$H_{aa}, H_{bb} \dots \text{ Einzentren-}$$

$$H_{ab} \dots \text{ Zweizentren-}$$

$$S_{ab} \dots \text{ Überlappungsintegral}$$

$$(3)$$

* 1 kK (kilo-Kaiser) = 1000 cm^{-1} .

Zur Bestimmung von β_{PN} wurde die Näherung nach *Helmholtz* (3) benutzt. Beim Vergleich mit β_{CC} erhält man für das Resonanzintegral β_{PN} aus Gl. (3) die Beziehung (4):

$$\rho_{\rm PN} = \frac{\beta_{\rm PN}}{\beta_{\rm CC}} = \frac{S_{\rm PN}}{S_{\rm CC}} \cdot \frac{\alpha_{\rm P} + \alpha_{\rm N}}{2\,\alpha_{\rm C}} \tag{4}$$

 $\beta_{\rm CC}$ und $S_{\rm CC}$ sind Resonanz- und Überlappungsintegral zweier $2 p_{\pi}$ -Kohlenstoffatomorbitale im Bindungsabstand von $r \sim 1.4$ Å. Mit *Slaterschen*

Tabelle 3. Ladungsverteilung in N-Phenyl-P-triphenyl-iminophosphoran (3) in Abhängigkeit vom Resonanzintegral β_{PN}

β _{PN}	P=N-Gruppierung			Phenylring			
	P _{PN}	<i>q</i> _P	q_{N}	q _o	<i>q</i> _m	q_{p}	
0	0	+ 1	-0,7295		+0,0028		
0,5	0,6191	+ 0,7155	-0,5526	-0,0725	+0,0023	— 0,0613	
1,0	0,8197	+ 0,4531	-0,3781		+0,0016		

Atomfunktionen^{*} erhält man aus den Tabellen von $Jaffe^{13}$ einen Wert von $S_{\rm PN} = 0.11$, wenn man einen P=N-Bindungsabstand von 1.57 Å ansetzt.

- Elektronenenergie: -1,4142 B

Abb. 3.

Abb. 4.

-9,9050 B

T-Elektronenenergie:

Abb. 3. Moleküldiagramm von Iminophosphoran Abb. 4. Moleküldiagramm von N-Phenyl-iminophosphoran

wie er von Wiegräbe¹⁴ berechnet wurde. Das Überlappungsintegral der C--C-Bindung beträgt: S_{CC} , r=1,4 Å = 0,24. Für den gesuchten Para-

^{*} Die Orbitalexponenten für P⁺, N⁻ und C wurden nach den *Slater*schen Regeln zu $\zeta_{P^+, 3d} = 0.333$ bzw. $\zeta_{N^-, 2p} = 1.775$ und $\zeta_{C, 2p} = 1.625$ in atomaren Einheiten bestimmt.

¹³ H. H. Jaffé, J. Chem. Physics **21**, 258 (1953).

¹⁴ W. Wiegräbe, Diss. Univ. München, Mai 1963, p. 9.

meter ρ_{PN} folgt damit durch Einsetzen in (4) ein Wert von $\rho_{PN} \sim 0.5$ in Übereinstimmung mit der groben Abschätzung aus den UV-Spektren von **3** (s. S. 10).

Moleküldiagramme einiger Iminophosphorane

Die Moleküldiagramme einiger Beispiele verschiedenartig substituierter Iminophosphorane sind in den Abb. 3 bis Abb. 7 zusammengefaßt. Die formalen Ladungen am Phosphor und Stickstoff wurden den π -Elektronennettoladungen hinzugezählt. Als typische Substituenten am Phenylring wurden die Methylgruppe (Abb. 5), die Dimethylaminogruppe (Abb. 6) und die Nitrogruppe (Abb. 7) ausgewählt. Diskussion der Rechenergebnisse

Eine Betrachtung der negativen Partialladung am Stickstoff läßt erkennen, daß Iminophosphorane ohne aromatische Reste am Stickstoff

viel stärkere Basen sind als die N-arylsubstituierten Verbindungen. Die Basenstärke sinkt nochmals ab, wenn am Phenylring o- oder p-Nitrogruppen substituiert sind. Diese Richtung der Abnahme der Basenstärke wird durch die chemischen Befunde bestätigt. Während zur Bildung von aliphatisch substituierten oder unsubstituierten Iminophosphoranen aus den korrespondierenden Phosphoniumsalzen sehr starke Basen, wie Natriumamid, erforderlich sind, gelingt die Protonabspaltung vom Stickstoff bei der Synthese von 2 oder 3 bereits mit Triäthylamin^{3a}.

In bezug auf die Reaktionsfähigkeit gegenüber elektrophilen Agentien sollten die N-Phenyl-iminophosphorane den reaktivsten Benzolaromaten

wie Anisol oder Dimethylanilin entsprechen; die π -Elektronennettoladungen in den reaktiven o- und p-Positionen am Phenylring sind in Tab. 4 zusammengestellt. Die leichte Substituierbarkeit durch elektrophile Reagentien wird gleichfalls durch die experimentellen Befunde bestätigt⁴.

Horner und Ödiger⁵ haben die UV-Absorptionsspektren der drei isomeren N-(Nitrophenyl)-P-triphenyl-iminophosphorane vermessen. Eine

Verbindung	<i>q</i> ₀	a ^b b
$P = \overline{N}$	— 0,0725	0,0613
CH ₃ Ō-	0,0566	0,0425
	0,0903	0,0775

Tabelle 4. π-Elektronennettoladungen in den bei der elektrophilen Substitution reaktiven Positionen

Tabelle 5. Berechnete und experimentell gemessene⁵ UV-Absorptionsspektren von N-(Nitrophenyl)-P-triphenyliminophosphoranen

Trachie Jean	berechnet			exper.		
verbindung	$\Delta E(\beta)$	$\Delta E(\rm kK)^*$	μ ^{2**}	I**	v'(kK)	E
-P = N $-NO$	0,929	23,2	3,87	9000	26	20 000
	1,213	30,3	0,23	700	32***	$<\!2000$
P = N	0,822	20,5	0,51 (0,67)	1000 (1400)	26,5	1500
NO ₂	1,052	26,3	1,45 (1,13)	3800 (3000)	38	20 000
P = N	0,906	22,6	1,70 (0,87)	3800 (2000)	25,5	2500
O ₂ N	1,151	28,8	0,50 (1,41)	1400 (4100)	36***	$<\!3500$

* $|\beta| = 25\ 000\ \mathrm{cm}^{-1}$.

** Bezüglich der Berechnung von μ^2 und *I* vgl. Tab. 2, Fußnote**. Bei den o. und m-substituierten Verbindungen sind zwei Orientierungen möglich; die Orientierung, bei der die P=N-Doppelbindung und die Nitrogruppe in die gleiche Richtung weisen, ist aus sterischen Gründen weniger wahrscheinlich, weshalb die berechneten Werte in Klammern gesetzt wurden.

*** Diese Banden erscheinen im Spektrum nur als Inflexionen.

Berechnung der Elektronenanregungsspektren zum Vergleich mit den experimentellen Daten war daher naheliegend. Tab. 5 zeigt, daß sowohl die relativen Bandenlagen, als auch die relativen Intensitäten durch die Rechnung in zufriedenstellender Art wiedergegeben werden. Die berechneten

1322 P. Schuster: Zur π -Elektronenstruktur von Iminophosphoranen

Bandenlagen sind gegenüber den experimentellen Werten bei zu langen Wellenlängen gelegen. Dies ist als Folge des durch die O₂N-Gruppe veränderten β -Äquivalents¹⁰ durchaus zu verstehen. Von einer Korrektur des Zahlenwertes wurde hier abgeschen, da dieser nicht unabhängig vom zweiten Substituenten, der P=N-Gruppe, sein kann, über den zu wenig experimentelles Material vorliegt. Außerdem überlagern sich in den vermessenen UV-Spektren⁵ die Banden sehr stark und sind vielfach nur als Inflexionen zu erkennen, wodurch die in Tab. 5 angegebenen Bandenlagen und Intensitäten mit großen Fehlern behaftet sein können.

Rechendetails

Die Moleküldiagramme für π -Elektronenstrukturen mit mehr als zwei Zentren werden mittels des von *Derflinger* verfaßten Computerprogrammes FIJAC II berechnet; alle anderen Rechnungen wurden von Hand aus durchgeführt.

Herrn Univ.-Doz. Dr. E. Zbiral danke ich für die Anregung zu dieser Arbeit und für die Diskussion. Herrn Prof. Dr. O. E. Polansky, dem Inhaber der Lehrkanzel für Theoretische Organische Chemie, danke ich für seine Ratschläge betreffend die Abfassung des Textes. Dem Vorstand des Instituts für Statistik, Herrn Prof. Dr. S. Sagoroff, bin ich für die Erlaubnis, die elektronische Rechenanlage benützen zu dürfen, Herrn Dr. G. Derflinger für die Überlassung des Computerprogrammes FIJAC II zu Dank verpflichtet.